On Evaluating Machine Learning Models for Anomaly Detection

Université de Sherbrooke Presented by : D'Jeff Kanda Nkashama

https://djeffkanda.github.io/

What is anomaly detection?

- Anomaly detection is identifying observations that deviate from what is deemed normal observations.
- Depending on the situation, such an observation is considered unusual, irregular, atypical, inconsistent, unexpected, rare, erroneous, faulty, fraudulent, malicious,

Anomaly detection algorithms

- Families of anomaly detection algorithms:
 - Distance-based methods (LOF)
 - Methods learning decision boundaries (SVM)
 - Probabilistic methods (GMM)
 - Reconstruction-based methods (Autoencoders)
- Algorithms output a score, then a threshold is used on this score to determine whether the sample is an anomaly

Figure 5 of A Unifying Review of Deep and Shallow Anomaly Detection, Ruff et al. 2021.

Problems with current evaluation protocols

- The evaluation protocols used in the literature are inconsistent
- Makes comparisons of reported results difficult to interpret from paper to paper

Madaal	KDDCUP			Thyroid		
Method	Precision	Recall	F_1	Precision	Recall	F_1
OC-SVM	0.7457	0.8523	0.7954	0.3639	0.4239	0.3887
DSEBM-r	0.1972	0.2001	0.1987	0.0404	0.0403	0.0403
DSEBM-e	0.7369	0.7477	0.7423	0.1319	0.1319	0.1319
DCN	0.7696	0.7829	0.7762	0.3319	0.3196	0.3251
GMM-EN	0.1932	0.1967	0.1949	0.0213	0.0227	0.0220
PAE	0.7276	0.7397	0.7336	0.1894	0.2062	0.1971
E2E-AE	0.0024	0.0025	0.0024	0.1064	0.1316	0.1176
PAE-GMM-EM	0.7183	0.7311	0.7246	0.4745	0.4538	0.4635
PAE-GMM	0.7251	0.7384	0.7317	0.4532	0.4881	0.4688
DAGMM-p	0.7579	0.7710	0.7644	0.4723	0.4725	0.4713
DAGMM-NVI	0.9290	0.9447	0.9368	0.4383	0.4587	0.4470
DAGMM	0.9297	0.9442	0.9369	0.4766	0.4834	0.4782

Table 2 of the DAGMM paper (Zong et al., 2018).

Mathad	KDD99			Thyroid		
Methou	Presion	Recall	F_1	Presion	Recall	F_1
PCA	0.8312	0.6266	0.7093	0.9258	0.7322	0.8089
Kernel PCA	0.8627	0.6319	0.7352	0.9537	0.7493	0.8402
KDE	0.8119	0.6133	0.6975	0.9275	0.7129	0.7881
RKDE	0.8596	0.6328	0.7322	0.9437	0.7538	0.8429
OC-SVM	0.8050	0.6512	0.7113	0.9602	0.7424	0.8481
AEOD	0.7624	0.6218	0.6885	0.9157	0.6927	0.7873
DSEBM-r	0.8521	0.6472	0.7328	0.9527	0.7479	0.8386
DSEBM-e	0.8619	0.6446	0.7399	0.9558	0.7642	0.8375

Table 2 of the DSEBM paper (Zhai et al., 2016).

Inconsistencies in data split and threshold choice

Because we train on normal data only, we are left with anomalies after splitting the dataset in a training and test set. We spotted three strategies:

- Discarding the anomalies found in the training set. DSEBM (Zhai et al., 2016)
- Injecting all the anomalies in the test set. DAGMM (Zong et al., 2018), ALAD (Zenati et al., 2018)
- Making the test set balanced (by putting as many normal samples as anomalous samples). DROCC (Goyal et al., 2020)

Two strategies to set the threshold:

- Fixing the threshold based on the anomaly ratio DAGMM, ALAD
- Looking for the optimal threshold NeuTraL AD (Qiu et al., 2021)

Inconsistencies in reported metrics

Which metrics do we use and how do we set the threshold for classification?

• Accuracy, Precision, Recall, F1-score, Area Under the Receiver-Operating Curve (AUROC), Area Under the Precision-Recall curve (AUPR)

What is the class of interest?

• Changes the anomaly ratio by reversing the balance of the dataset

Method \ Metric	Accuracy	Recall	Precision	F1-Score	AUPR	AUROC
ALAD	x	~	~	~	x	~
DAGMM	x	0	0	0	x	x
DeepSVDD	x	х	x	x	x	0
DROCC	x	х	x	~	x	~
DSEBM	x	0	0	0	x	x
DUAD	x	х	x	x	~	0
GOAD	x	х	x	~	x	~
LOF	x	х	x	x	x	x
MemAE	x	2	~	~	x	~
OC-SVM	x	х	x	x	x	x
RecForest	x	х	0	x	x	0
SOM-DAGMM	0	0	0	0	x	x
NeuTral-AD	x	~	~	~	x	~

Reported metrics in various papers.

Proposed evaluation protocol

The evaluation protocol we propose fixes the following issues:

- How to choose the class of interest
- How to split the dataset
- Which metrics to report
- How to set the threshold

A Revealing Large-Scale Evaluation of Unsupervised Anomaly Detection Algorithms

Maxime Alvarez*, Jean-Charles Verdier*, D'Jeff K Nkashama*, and 3 more authors In Workshop on Setting up ML Evaluation Standards to Accelerate Progress, International conference on learning representations 2022

Class of interest & Data split

- Use the minority class as the class of interest
- Split the normal data 50/50 and put all the anomalies in the test set

Threshold & Reported metrics

- Choose the optimal threshold
- Report F1-score, Precision, Recall, and AUPR
 - Precision and Recall, together, allow us to consider the imbalance of the dataset
 - AUPR allows us to evaluate the performance independently of the threshold
- AUROC considered too optimistic for unbalanced datasets

	AUROC	AUPR
DAE	0.982(0.000)	0.947(0.001)
DAGMM	0.991(0.003)	0.973(0.006)
SOM-DAGMM	0.989(0.002)	0.958(0.013)
DUAD	0.983(0.010)	0.932(0.035)
MemAE	0.982(0.002)	0.947(0.006)
DeepSVDD	0.994(0.002)	0.971(0.010)
DROCC	0.975(0.000)	0.932(0.000)
DSEBM-e	0.986(0.001)	0.939(0.005)
DSEBM-r	0.990(0.000)	0.956(0.002)
ALAD	0.990(0.002)	0.953(0.011)
NeuTraLAD	0.988(0.001)	0.970(0.001)
OC-SVM	0.988(0.000)	0.949(0.000)
LOF	0.911(0.000)	0.899(0.000)

KDD10

Anomaly detection datasets

- Tabular data, time series, images
- Anomaly detection datasets are often **imbalanced**
- We train unsupervised algorithms on normal data only
 - We may want to train on normal data contaminated with anomalies to test the robustness of the algorithm

DATASET	NUMBER OF SAMPLES (N)	NUMBER OF FEATURES (D)	ANOMALY RATIO (ρ)
ARRHYTHMIA	452	274	0.1460
CSE-CIC-IDS2018	16 232 944	83	0.1693
KDD 10%	494 021	42	0.1969
NSL-KDD	148 517	42	0.4811
Thyroid	3772	6	0.0246

Table 1. General information on the datasets.

Experiments

- 12+ unsupervised anomaly detection algorithms
- 5+ tabular datasets from cybersecurity and medical domains

KDDCUP 10

- All evaluated following the proposed evaluation protocol
- Used the hyperparameters from the original paper when available
- Goal: To give a more accurate picture of the relative performances of these algorithms!

		Repeter 10	
	Precision	Recall	F_1
DAE	0.932(0.013)	0.932(0.026)	0.932(0.020)
DAGMM	0.936(0.009)	0.984(0.019)	0.959(0.014)
SOM-DAGMM	0.957(0.007)	0.998(0.002)	0.977(0.003)
DUAD	0.940(0.007)	0.991(0.014)	0.965(0.010)
MemAE	0.930(0.012)	0.971(0.022)	0.950(0.017)
DeepSVDD	0.908(0.02)	0.876(0.02)	0.891(0.02)
DROCC	0.840(0.000)	0.996(0.000)	0.911(0.000)
DSEBM-e	0.957(0.001)	0.976(0.001)	0.966(0.001)
DSEBM-r	0.966(0.001)	0.994(0.001)	0.980(0.001)
ALAD	0.951(0.005)	0.966(0.010)	0.959(0.007)
NeuTraLAD	0.931(0.003)	0.997(0.001)	0.964(0.002)
OC-SVM	0.942(0.000)	0.994(0.000)	0.967(0.000)
LOF	0.930(0.000)	0.972(0.000)	0.951(0.000)

	KDD10			
	AUROC	AUPR		
DAE	0.982(0.000)	0.947(0.001)		
DAGMM	0.991(0.003)	0.973(0.006)		
SOM-DAGMM	0.989(0.002)	0.958(0.013)		
DUAD	0.983(0.010)	0.932(0.035)		
MemAE	0.982(0.002)	0.947(0.006)		
DeepSVDD	0.994(0.002)	0.971(0.010)		
DROCC	0.975(0.000)	0.932(0.000)		
DSEBM-e	0.986(0.001)	0.939(0.005)		
DSEBM-r	0.990(0.000)	0.956(0.002)		
ALAD	0.990(0.002)	0.953(0.011)		
NeuTraLAD	0.988(0.001)	0.970(0.001)		
OC-SVM	0.988(0.000)	0.949(0.000)		
LOF	0.911(0.000)	0.899(0.000)		

VDD10

Lessons Learned

- The relative performance of algorithms in the literature is not the same as the one we get when we use our consistent evaluation protocol
- Our vanilla auto-encoder DAE outperforms more sophisticated reconstruction-based methods like DAGMM and MemAE on CIC-IDS2018
- Baseline methods with optimized hyper-parameters achieve more competitive F1scores than reported in the literature so far
- NeuTraLAD, the transformation based approach, offers consistently above-average performance across all datasets
- Taking the majority class as the class of interest gives overly optimistic results
- AUPR is more informative than AUROC on unbalanced datasets

Models' Robustness

- AD models assume data is clean
- Problem : Data can be contaminated in real-world

Models' Robustness

Backdoor / poisoning integrity attacks place mislabeled training points in a region of the feature space far from the rest of training data. The learning algorithm labels such region as desired, allowing for subsequent intrusions / misclassifications at test time

Attacks against ML Models

Attacker's Goal Misclassifications that do Misclassifications that Querying strategies that reveal confidential information on the not compromise normal compromise normal learning model or its users system operation system operation **Availability Privacy / Confidentiality** Integrity **Attacker's Capability** Evasion (a.k.a. adversarial Test data Model extraction / stealing examples) and model inversion (a.k.a. hill-climbing attacks) Training data Poisoning (to allow subsequent Poisoning (to maximize intrusions) – e.g., backdoors or classification error) neural network trojans

nttps://www.sciencedirect.com/science/article/pii/S0031320318302565?casa_token=HaMtrlpmJYsAAAAA:39tZl6rZ29n2nKQ0t-SLT4ByTTYhZOCS2oB354wOzM6zsqGo2ss9oCjCk19PN7De8ZHHWuQNbkc

Robustness evaluation

On Evaluating the Robustness of Deep Unsupervised Learning Methods for Network Intrusion Detection

D'Jeff K Nkashama, Soltani Arian, Jean-Charles Verdier, and 3 more authors

In Workshop on Machine Learning for Cybersecurity, International Conference on Machine Learning 2022

Paper : https://arxiv.org/pdf/2207.03576.pdf

Code : https://github.com/intrudetection/robevalanodetect

Conclusion

- A consistent evaluation protocol as a basis to compare unsupervised anomaly detection algorithms
- Updated and more precise picture of the relative performance of twelve methods on five widely used tabular datasets

	Precision	Recall	F_1
DAE	0.932(0.013)	0.932(0.026)	0.932(0.020)
DAGMM	0.936(0.009)	0.984(0.019)	0.959(0.014)
SOM-DAGMM	0.957(0.007)	0.998(0.002)	0.977(0.003)
DUAD	0.940(0.007)	0.991(0.014)	0.965(0.010)
MemAE	0.930(0.012)	0.971(0.022)	0.950(0.017)
DeepSVDD	0.908(0.02)	0.876(0.02)	0.891(0.02)
DROCC	0.840(0.000)	0.996(0.000)	0.911(0.000)
DSEBM-e	0.957(0.001)	0.976(0.001)	0.966(0.001)
DSEBM-r	0.966(0.001)	0.994(0.001)	0.980(0.001)
ALAD	0.951(0.005)	0.966(0.010)	0.959(0.007)
NeuTraLAD	0.931(0.003)	0.997(0.001)	0.964(0.002)
OC-SVM	0.942(0.000)	0.994(0.000)	0.967(0.000)
LOF	0.930(0.000)	0.972(0.000)	0.951(0.000)

KDDCUP 10

Your new algorithm \rightarrow ?

